
For some time, researchers have done pro-
duction visualization almost exclusively

using high-end graphics workstations. They routinely
archived and analyzed the outputs of simulations run-

ning on massively parallel super-
computers. Generally, a feature
extraction step and a geometric
modeling step to significantly
reduce the data’s size preceded the
actual data rendering. Researchers
also used this procedure to visual-
ize large-scale data produced by
high-resolution sensors and
scanners. While the graphics work-
station allowed interactive visual-
ization of the extracted data,
looking only at a lower resolution
and polygonal representation of the
data defeated the original purpose
of performing the high-resolution

simulation or scanning.
To look at the data more closely, researchers could

run batch-mode software rendering of the data at the
highest possible resolution on a parallel supercomput-
er using the rendering parameters suggested by the
interactive viewing. However, researchers frequently
didn’t do this for several reasons. First, a supercomput-
er is a precious resource. Scientists wanted to reserve
their limited computer time on the supercomputers for
running simulations rather than visualization calcula-
tions. Second, many of the parallel-rendering algo-
rithms don’t scale well, so the large number of massively
parallel computer processors couldn’t be fully and effi-
ciently used. Third, most of the parallel-rendering algo-
rithms were developed for meeting research curiosity
rather than for production use. As a result, large and
complex data couldn’t be rendered cost effectively.

However, the current technology trend of cheaper,

more powerful computers prompted us to revisit the
option of using parallel software rendering (and in some
cases, discarding hardware rendering totally). Most
graphics cards were mainly optimized for polygon ren-
dering and texture mapping. Scientists can now model
physical phenomena with greater accuracy and com-
plexity. Analyzing the resulting data demands advanced
rendering features that weren’t generally offered by
commercial graphics workstations. In addition, the
short lifespan, limited resolution, and high cost of graph-
ics workstations constrain what scientists can do.

However, the decreasing cost and rapidly increasing
performance of commodity PC and network technolo-
gies have let us build powerful PC clusters for large-scale
computing. Supercomputing is no longer a shared
resource. Scientists can build cluster systems dedicated
to their own research. They can also build such systems
incrementally to solve problems with increasing com-
plexity and scale. More importantly, they can now afford
to use the same machine for visualization calculations
either for runtime visual monitoring of the simulation or
postprocessing visualization calculations. Therefore,
parallel software rendering is becoming a viable solu-
tion for visualizing large-scale data sets.

In this tutorial, we describe two highly scalable, par-
allel software volume-rendering algorithms. We
designed one algorithm for distributed-memory paral-
lel architectures to render unstructured-grid volume
data.1 We designed the other for shared-memory par-
allel architectures to directly render isosurfaces.2

Through the discussion of these two algorithms, we
address the most relevant issues when using massively
parallel computers to render large-scale volumetric
data. The focus of our discussion is direct rendering of
volumetric data, so we don’t consider other techniques
for treating the large-scale data visualization problem
such as feature extraction, multiresolution schemes, and
compression.
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Parallel volume visualization
Volume rendering3 is a powerful technique because

it can potentially display more information in a single
visualization than techniques such as isosurfacing or
slicing. It’s more flexible because we can also implement
it to generate isosurfaces and cut planes or a mixture of
them. Most importantly, direct volume rendering is par-
ticularly effective for visualizing fine features and those
features that can’t be defined analytically or with a bina-
ry classification of the data. Figure 1 shows two volume
rendered images.

In Figure 2, the basic volume-rendering algorithm
steps through the data volume, integrating color and
opacity along a ray. A transfer function defines the rela-
tionship between values in the data set and the color
and opacity at each point. Areas of high opacity will con-
tribute more to the pixel’s final color. Another method
for performing volume rendering starts with the data
set’s cells and integrates color and opacity for multiple
pixels under the data cell’s projected area. The differ-
ence between these two algorithms is roughly analo-
gous to the differences between ray tracing and z-buffer
rendering. Other algorithms, such as the first one we
describe in the following section, employ a hybrid
approach between these two algorithms.

Volume rendering is computationally expensive
because of the interpolation and shading calculations
required for every sample point in the data’s spatial
domain. We can achieve interactive volume rendering of
large-scale data sets by using graphics hardware4,5 or a
parallel computer.6 Kniss et al.4 used a hybrid parallel-
software and texture-hardware capability of a multip-
ipe SGI Onyx2 and rendered a time-varying 10243

volume at multiple frames per second. Lum and Ma5

demonstrated that a single PC with a NVidia GeForce 2
card and a disk array (for less than $2,500) could ren-
der a time-varying 640 × 256 × 256 volume at high
frame rates, permitting interactive exploration in both
the data’s temporal and spatial domains.

A parallel volume-rendering algorithm
for 3D unstructured-grid data

Increasingly, we use unstructured meshes to model
some of the most challenging scientific and engineer-
ing problems, from aerodynamics calculations, accel-
erator simulations, and blast simulations to bioelectric
field simulations. Applying finer meshes only to regions
with complex geometry or requiring high accuracy can
significantly reduce computing time and storage space.
This adaptive approach results in computational mesh-
es containing irregular data cells (in both size and
shape). The lack of a simple indexing scheme for tra-
versing the data cells makes visualization calculations
on such meshes more expensive than on regular mesh-
es. In a distributed computing environment, irregular-
ities in cell size and shape make balanced load
distribution especially difficult.

Ma and Crockett1 introduced a parallel cell-projec-
tion volume rendering algorithm for visualizing
unstructured-grid data. The basic algorithm performs
the following sequence of tasks:

1. distribute data and visualization parameters,
2. space partitioning,
3. view transformation,
4. scan conversion of data cells,
5. merge of ray segments, and
6. assemble and output final images.

In this tutorial, we discuss the design philosophy
behind this algorithm and the implementation strate-
gies we used to achieve high scalability. Our test results
show that an implementation of this algorithm on the
Cray T3E can achieve above 75 percent parallel effi-
ciency when rendering 18 million tetrahedra using up to
512 processors. To learn complete performance num-
bers on several different parallel architectures, you
should refer to the Ma and Crockett article.1
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Key design criteria
One problem shared by many visualization algo-

rithms for unstructured data is the need for a significant
amount of preprocessing. One step extracts additional
information about the mesh, such as connectivity, to
speed up later rendering calculations. Another step may
be needed to partition the data based on the particular
parallel computing configuration being used (number of
processors, communication parameters, and so on). To
reduce the user-hassle factor as much as possible and
avoid increasing the data size or replicating data, we
suggest avoiding offline preprocessing whenever possi-
ble—especially for rendering large-scale data sets.

While eliminating preprocessing provides flexibility
and convenience, it also means less information is avail-
able for optimizing the rendering computations. The
algorithm introduced here sacrifices a small amount of
performance in favor of enhanced usability. An optimal
renderer design should seek a balance between prepro-
cessing cost and parallel-rendering performance. One
good design criterion is to conduct low-cost prepro-
cessing calculations (for example, for view-dependent
optimization) prior to the rendering time on the same
parallel computer to increase parallel rendering effi-
ciency. That is, the preprocessing is also parallelized to
incur less storage requirements and data transport.

In addition to offering flexibility, the parallel render-
er must be highly scalable so that whenever many
processors are available they can be used to render
large-scale data efficiently. As we describe in the next
section, we can achieve high scalability by using fine-
grain load interleaving coupled with an asynchronous
communication strategy that overlaps the rendering cal-
culations with interprocessor communication.

Load distribution
Ideally, data should be distributed so that every

processor requires the same amount of storage space
and incurs the same computational load. Several fac-
tors affect this. For the sake of concreteness, let’s con-
sider meshes composed of tetrahedral cells. First, there’s
some cost for scan converting each cell. Variations in the
number of cells assigned to each processor will produce
variations in workloads. Second, cells come in different
sizes and shapes. The difference in size can be as large
as several orders of magnitude due to the mesh’s adap-

tive nature. As a result, a cell’s projected image area can
vary dramatically, which produces similar variations in
scan-conversion costs. Furthermore, a cell’s projected
area also depends on the viewing direction. Finally,
voxel values are mapped to both color and opacity val-
ues to user-specified transfer functions. An opaque cell
can terminate a ray early, thereby saving further merg-
ing calculations but introducing further variability in
the workload.

One common approach assigns groups of connected
cells to each processor so that exploiting cell-to-cell
coherence can optimize the rendering process. But con-
nected cells are often similar in size and opacity, so that
grouping them together exacerbates load imbalances,
making it difficult to obtain satisfactory partitionings.
For parallel rendering of large-scale unstructured-grid
data, the opposite approach—dispersing connected
cells as widely as possible among the processors—is in
fact better. That is, each processor is loaded with cells
taken from the whole spatial domain rather than from
a small neighborhood.

We can generally achieve satisfactory scattering of
the input data can with a simple round–robin assign-
ment policy. With enough cells, the computational
requirements for each processor tend to average out,
producing an approximate load balance. This approach
also satisfies our requirement for flexibility, since the
data distribution can be computed trivially for any num-
ber of processors, without the need for an expensive pre-
processing step.

Dispersing the grid cells among processors also facil-
itates an important visualization operation for unstruc-
tured data—zoom-in viewing. Because of the highly
adaptive nature of unstructured meshes, the most impor-
tant simulation results are usually associated with a rel-
atively small portion of the overall spatial domain. The
viewer normally takes a peek at the overall domain, then
immediately focuses on localized regions of interest such
as areas with high velocity or gradient values. This zoom-
ing operation introduces challenges for visualizing a dis-
tributed computing environment efficiently. First,
locating all the cells that reside within the viewing region
can be expensive. Our solution, described in the next sec-
tion, employs a spatial partitioning tree to speed up this
cell searching. Second, if data cells are distributed to
processors as connected components, zooming in on a
local region will result in severe load imbalances, because
only a few processors handle all the rendering calcula-
tions while others are idle.

Although the round–robin distribution discourages
data sharing, this rendering algorithm only requires
minimum data—the cell and node information. It does-
n’t need connectivity data. Each cell takes 16 bytes to
store four node indices, and each node takes 16 bytes to
store three coordinates and a scalar value. As a result,
in the worst case of not sharing any node information,
80n bytes of data must be transferred for distributing n
cells per processor. For example, on average, about
640,000 bytes of data are transferred to and stored at
each processor when distributing a data set consisting of
1 million cells to 128 processors.

In addition to the object–space operations on mesh
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cells, pixel-oriented ray-merging computations must
also be evenly distributed to processors. Local variations
in cell sizes within the mesh lead directly to variations
in depth complexity in image space. We also need an
image partitioning strategy that disperses the ray-merg-
ing operations. Scanline interleaving, which assigns suc-
cessive image scanlines to processors in round–robin
fashion, generally works well as long as the image’s ver-
tical resolution is several times larger than the number
of processors. When using numerous processors, we
need finer grained pixel interleaving to more effective-
ly distribute high-density regions over more processors,
resulting in better load balancing and improved scala-
bility. Our test results show we can speed up the overall
rendering by nearly 10 percent with pixel interleaving
when using a large system.

Parallel space partitioning
The round–robin data distribution scheme helps to

achieve flexibility and produces an approximate static
load balance. However, it destroys the spatial relation-
ship between mesh cells, making an unstructured data
set even more irregular. Certain ordering must be
restored so that the rendering step can be performed
more efficiently.

The central idea is to have all processors render the
cells in the same neighborhood at about the same time.
Ray segments generated for a particular region would
consequently arrive at their image–space destinations
within a relatively short window of time, letting them
merge early. This early merging tends to limit the length
of the ray-segment list that each processor maintains,
which benefits the rendering process in two ways:

� a shorter list reduces the cost of inserting a ray seg-
ment in its proper position within the list and

� the memory needed to store unmerged ray segments
is reduced.

To provide the desired ordering, we can group data
cells into local regions using a hierarchical spatial data
structure such as an octree or k-d tree. Figure 3 shows
rendering a region within such a partitioning, where
different processors store the different colored cells and
scan converts them.

The tree should be constructed cooperatively so that
the resulting spatial partitioning is exactly the same on
every processor. After the host computer initially dis-
tributes the data cells, all processors participate in such
a synchronized parallel partitioning process. The algo-
rithm works as follows:

� Each processor examines its local collection of cells
and establishes a cutting position so that the two
resulting subregions contain about the same number
of cells. The cut’s direction is the same on each proces-
sor and alternates at each level of the partitioning.

� The proposed local cutting positions are reported by
the processors to a designated host node, which aver-
ages them to obtain a global cutting position. This
information is then broadcast by the host node to each
processor, along with the host’s choice of the next sub-

region to be partitioned. We assign a cell crossing the
cut boundary to the region containing its centroid.

� The procedure repeats until the desired number of
regions has been generated.

At the end of the partitioning process, each processor
has an identical list of regions, with each region repre-
senting approximately the same rendering load as the
corresponding region on every other processor. If all
processors render their local regions in the same order,
loose synchronization can be achieved because of the
similar workloads, letting early ray merging take place
within the local neighborhoods. Test results show that
for each pixel the maximum number of ray segments
that can’t be premerged and therefore must be stored
into the temporary list is always less than 10 percent of
the total number of ray segments received for the same
pixel. Figure 4 displays plots of the total number of the
ray segments received for each pixel and the actual num-
ber stored. The k-d tree also allows for fast searching of
cells within a spatial region specified by a zoom-in view.
In addition, the spatial regions can also serve as work-
load units should we ever need to perform dynamic load
balancing.
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the images how using a spatial partitioning tree affects the order in which
ray segments are generated and delivered.



Cell-projection rendering
We use a cell-projection rendering method to render

the volume data because it offers more flexibility in data
distribution. During rendering, processors follow the
same path through the spatial partitioning tree, pro-
cessing all the cells at each leaf node of the tree. Each
processor scan converts local cells independent of other
processors and sends the resulting ray segments to the
processor that owns the corresponding image scanline.
Ray segments received by each processor are merged
according to the depth order using the standard
Porter–Duff over operator.

Because the ray segments that contribute to a given
pixel arrive in an unpredictable order, each ray segment
must contain not only a sample value and pixel coordi-
nates but starting and ending depth values for sorting
and merging within the pixel’s ray segment list. For the
typical applications we envision, 106 to 108 ray segments
may be generated for each image; at 16 bytes per seg-
ment, aggregate communication requirements are
approximately 107 to 109 bytes per frame. Clearly, man-
aging the communication efficiently is essential to this
approach’s viability.

Task management with asynchronous
communication

Good scalability and parallel efficiency can only be
achieved if we can keep the parallelization penalty and
communication cost low. To manage communication
costs, we use an asynchronous communication strate-
gy. Its features include

� asynchronous operation, which allows processors to
proceed independently of each other during the ren-
dering computations;

� multiplexing of the object–space cell computations
with the image–space ray merging computations;

� overlapped computation and communication, which
hides data transfer overheads and spreads the com-
munication load over time; and

� buffering of intermediate results
to amortize communication over-
heads.

During the course of rendering, two
main tasks must be performed: scan
conversion and image compositing.
We can attain high efficiency if we
can keep all processors busy doing
either of these two tasks. Logically,
the scan conversion and merging
operations represent separate
threads of control, operating in dif-
ferent computational spaces and
using different data structures. For
the sake of efficiency and portabili-
ty, however, it’s a good strategy to
interleave these two operations
using a polling strategy, as Figure 5
illustrates. Each processor starts by
scan converting one or more data
cells. Periodically the processor

checks to see if incoming ray segments are available; if
so, it switches to the merging task, sorting and merging
incoming rays until no more input is pending.

Because of the large number of ray segments gener-
ated, the overhead for communicating each of them
individually would be prohibitive in most architectures.
Instead, it’s better to buffer them up locally and send
many ray segments together in one operation. To sup-
plement this, we use asynchronous send and receive
operations, which let us overlap communication and
computation, reduce data copying overheads in mes-
sage-passing systems, and decouple the sending and
receiving tasks. This strategy proves most effective when
each destination has two or more ray-segment buffers.
While a send operation is pending for a full buffer, the
scan conversion process can be placing additional ray
segments in its companion buffer. In the event that both
buffers for a particular destination fill up before the first
send completes, rendering can switch to the ray-merg-
ing task and process incoming segments while waiting
for the outbound congestion to clear (in fact, this is
essential to prevent deadlock).

Users may specify two parameters to control the fre-
quency of task switching and communication. The first
parameter is the polling interval—that is, the number
of cells to be processed before checking for incoming ray
segments. If polling occurs too frequently, excessive
overheads will be introduced; if not, the asynchronous
communication scheme will perform poorly as out-
bound buffers clog up due to pending send operations.

The second parameter is the buffer depth, which
indicates how many ray segments should be accumu-
lated before the system posts an asynchronous send. If
the buffer size is too small, the overheads for initiating
send and receive operations will be excessive, resulting
in lowered efficiency. On the other hand, large buffers
can introduce delays for processors that have finished
their scan conversion work and are waiting for ray seg-
ments to merge. Large buffers are also less effective at
spreading the communication load across time, result-
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ing in contention delays in band-
width-limited systems.

When choosing an ideal buffer
size, we must take into account the
number of processors in use, the
number of ray segments to be com-
municated, and the target architec-
ture’s characteristics. As you might
suspect, the polling frequency should
be selected in accordance with the
buffer size. As a general rule, polling
should be performed more frequent-
ly with smaller buffer sizes or larger
numbers of processors. Empirical
results agree with this rule.

Because of the rendering algorithm’s asynchronous
nature, individual processors can’t determine when a
frame is complete. Hence, we must use a distributed ter-
mination detection protocol. A straightforward
approach would use a designated node (like the host
processor) to coordinate the termination process by col-
lecting local termination messages and broadcasting a
global termination signal. A final global synchroniza-
tion operation then ends the overall rendering process.
When using a large number of processors, this approach
would prolong the termination step.

A more scalable solution calls for using a binary merg-
ing algorithm based on ray-segment counts. That is,
because each processor knows exactly how many ray
segments it has sent to each of the other processors, a
binary-swap summing process would result in the total
number of ray segments each processor should eventu-
ally receive. At the end of this globally synchronous
process, each processor should hold exactly the num-
ber it needs. If this number is the same as the number
of segments the processor has actually received, the
processor can stop receiving. Figure 6 illustrates such a
summing process for a four-processor case. This bina-
ry-swap summing process can be carried out as soon as
all processors finish projecting local cells. Such an algo-
rithm runs in logarithmic, rather than linear, time and
doesn’t involve the host, making it more efficient and
scalable to a larger number of processors.

Discussion
We performed tests of the parallel volume-rendering

algorithm using an 18 million cell data set obtained from
a simulation of flow surrounding an aircraft wing (see
Figure 7). Direct volume rendering of the flow speed
(with the wing taken out) elicits many fine features in the
flow field that would be invisible with conventional 2D
or 3D contour plots. In particular, we can verify the low-
pressure region (red spherical cloud) above the wing and
the high-pressure region (yellow and orange blobs) below
the wing. We can also see the extreme low-velocity values
on the flaps (white stripes) and the complex flow patterns
ahead of the leading edge and behind the trailing edge
of the wing. None of these detailed phenomena could be
seen with either low-resolution data or rendering.

The algorithm scales well on large parallel systems.
As we mentioned earlier, we obtained more than 75 per-
cent parallel efficiency on the Cray T3E using up to as

many as 512 processors. Even on a cluster of Sun Ultra
5 and Ultra 60 CPUs over Fast Ethernet, our experi-
mental results show more than 63 percent parallel effi-
ciency using up to 128 processors. A PC cluster with a
1-Gbit network should easily outperform the T3E for
comparable numbers of processors and network per-
formance. Nevertheless, we should point out that this
algorithm doesn’t suit shared-memory architectures.
Our experiments on the SGI Origin 2000 architecture
show the algorithm doesn’t scale beyond 32 processors.7

The algorithm we describe next was designed specifi-
cally for shared-memory architectures.

A parallel ray-tracing algorithm for
isosurface rendering

The parallel rendering system we discussed in the pre-
vious section operates from object space, rendering indi-
vidual volume elements to a screen. The other approach
is to do the opposite: for each pixel on the screen, deter-
mine which object or objects contribute to that pixel’s
final color. This process is ray tracing.

Conventional wisdom holds that ray tracing is too
slow to be competitive with hardware z-buffers. How-
ever, when rendering a sufficiently large data set, ray
tracing should be competitive because its low time com-
plexity ultimately overcomes its large time constant.8

Because of the asymptotic complexity of each algorithm,
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ray tracing becomes a faster algorithm for rendering
images with large numbers of primitives. This crossover
will happen sooner on a multiple CPU computer because
of ray tracing’s high degree of intrinsic parallelism. The
same arguments apply to the volume traversal problem.

Figure 2 shows the basic ray-volume traversal method
we describe here. This framework lets us implement
volume visualization methods that find exactly one
value along a ray. Here, we describe an isosurfacing
algorithm for parallel ray tracing. Maximum-intensity
projection is a direct volume-rendering technique where
the opacity is a function of the maximum intensity seen
along a ray.

We know that ray tracing is accelerated through two
main techniques:9 accelerating or eliminating ray–voxel
intersection tests and parallelization. Acceleration is
usually accomplished by a combination of spatial sub-
division and early ray termination.3

Ray tracing for volume visualization naturally lends
itself toward parallel implementations.10 The computa-
tion for each pixel occurs independently of all other pix-
els, and the data structures used for casting rays are
usually read only. These properties have resulted in
many parallel implementations. Researchers have used
a variety of techniques to make such systems parallel
and have built many successful systems.11,12 (Whitman13

surveyed these techniques.)
Our system organizes the data into a shallow recti-

linear hierarchy for ray tracing. For unstructured or
curvilinear grids, we imposed a rectilinear hierarchy
over the data domain. Within a given level of the hier-

archy, we traverse from cell to cell using the incremen-
tal method that Amanatides and Woo14 described.

Memory bricking
The first optimization is to improve data locality by

organizing the volume into bricks, which are analogous
to using image tiles in image-processing software and
other volume rendering programs15 (see Figure 8).

Effectively using the cache hierarchy proves a crucial
task in designing algorithms for modern architectures.
Bricking, or 3D tiling, has been a popular method for
increasing locality for ray-cast volume rendering. The
system reorders the data set into n × n × n cells, which
then fill the entire volume. On a machine with 128-byte
cache lines and using 16-bit data values, n is exactly 4.
However, using float (32-bit) data sets, n is closer to 3.

Using an effective translation look-aside buffer (TLB)
is also becoming a crucial factor in algorithm perfor-
mance. The same bricking technique can be used to
improve TLB hit rates by creating m × m × m bricks of n
× n × n cells. For example, a 40 × 20 × 19 volume could
be decomposed into 4 × 2 × 2 macrobricks of 2 × 2 × 2
bricks of 5 × 5 × 5 cells. This corresponds to m = 2 and n
= 5. Because 19 can’t be factored by mn = 10, we need
one level of padding. We use m = 5 for 16-bit data sets
and m = 6 for 32-bit data sets.

The resulting offset q into the data array can be com-
puted for any x, y, z triple with the expression

q = ((x ÷ n) ÷ m)n3m3((Nz ÷ n) ÷ m)((Ny ÷ n) 
÷ m) + ((y ÷ n) ÷ m)n3m3((Nz ÷ n) ÷ m)
+ ((z ÷ n) ÷ m)n3m3 + ((x ÷ n) mod m)n3m2

+ ((y ÷ n) mod m)n3m + ((z ÷ n) mod m)n3

+ (x mod n × n)n2 + (y mod n) × n + (z mod n)
(1)

where Ny and Nz are the respective sizes of the data set.
Equation 1 contains many integer multiplication,

divide, and modulus operations. On modern processors,
these operations are extremely costly (32 or more cycles
for the MIPS R10000). Where n and m are powers of
two, we can convert these operations to bit shifts and
bit-wise logical operations. However, the ideal size is
rarely a power of two. Thus, we need a method that
addresses arbitrary sizes. We can convert some of the
multiplications to shift–add operations, but the divide
and modulus operations prove more problematic. Com-
puting the indices incrementally would require track-
ing nine counters, with numerous comparisons and poor
branch prediction performance. Note that we can write
Equation 1 as

q = Fx(x) + Fy(y) + Fz(z) (2)

where

Fx(x) = ((x ÷ n) ÷ m)n3m3((Nz ÷ n) ÷ m)((Ny ÷ n) 
÷ m) + ((x ÷ n) mod m)n3m2

+ (x mod n × n)n2

Fy(y) = ((y ÷ n) ÷ m)n3m3((Nz ÷ n) ÷ m) 
+ ((y ÷ n) mod m)n3m + (y mod n) × n
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Fz(z) = ((z ÷ n) ÷m)n3m3 + ((z ÷ n) mod m)n3

+ (z mod n)

We tabulate Fx, Fy, and Fz and use x, y, and z, respec-
tively, to find three offsets in the array. We sum these
three values to compute the index into the data array.
These tables will consist of Nx, Ny, and Nz elements,
respectively. The total sizes of the tables will fit in the
processor’s primary data cache even for large data-set
sizes. Using this technique, we note that you could pro-
duce more complex mappings than the two-level brick-
ing we describe here, although it’s not obvious which
would achieve the highest cache use.

For many algorithms, each iteration through the loop
examines the eight corners of a cell. To find these eight
values, we need to only look up Fx(x), Fx(x + 1), Fy(y),
Fy(y + 1), Fz(z), and Fz(z + 1). This consists of six index
table lookups for each of the eight data value lookups.

Multilevel grid
The other basic optimization we use is a multilevel

spatial hierarchy to accelerate the traversal of empty
cells as Figure 9 shows. Cells are divided into equal por-
tions and then the system creates a “macrocell,” which
contains the minimum and maximum data value for its
children cells. This is a common variant of standard ray-
grid techniques16 and resembles previous multilevel
grids.17 Others have shown minimum–maximum
caching to be useful.18,19

The ray–isosurface traversal algorithm examines the
min and max at each macrocell before deciding whether
to recursively examine a deeper level or to proceed to
the next cell. The typical complexity of this search will
be O(3√ n) for a three-level hierarchy. While the worst
case complexity is still O(n), it’s difficult to imagine an
isosurface approaching this worst case. Using a deeper
hierarchy can theoretically reduce the average case of
complexity slightly but also dramatically increases the
storage cost of intermediate levels.

We’ve experimented with modifying the number of
levels in the hierarchy and empirically determined that
a trilevel hierarchy (one top-level cell, two intermedi-
ate macrocell levels, and the data cells) is efficient. This
optimum may be data dependent and is modifiable at
program startup. Using a trilevel hierarchy, the storage
overhead is negligible (typically less than 0.5 percent of
the data size). The cell sizes used in the hierarchy are

independent of the brick sizes used for cache locality in
the first optimization.

We can index macrocells with the same approach that
we used for memory bricking the data values. Howev-
er, in this case each macrocell will have three table
lookups. This, combined with the significantly smaller
memory footprint of the macrocells, made the effect of
bricking the macrocells negligible.

Rectilinear isosurfacing
Once the data have been organized into bricks and

macrocells, the system can use these data structures to
render isosurfaces interactively. Our algorithm has three
phases:

1. traversing a ray through cells that don’t contain an
isosurface,

2. analytically computing the isosurface when inter-
secting a voxel containing the isosurface, and 

3. shading the resulting intersection point.

This process repeats for each pixel on the screen. A ben-
efit is that adding incremental features to the rendering
has only incremental cost. For example, if you visualize
multiple isosurfaces with some of them rendered trans-
parently, the correct compositing order is guaranteed
because we traverse the volume in a front-to-back order
along the rays. Additional shading techniques, such as
shadows and specular reflection, can easily be incorpo-
rated for enhanced visual cues. Another benefit is the abil-
ity to exploit texture maps without being limited by a fixed
quantity of special texture memory. We’ve demonstrat-
ed results of 5.1-Gbyte 3D textures interactively.

If we assume a regular volume with even grid-point
spacing arranged in a rectilinear array, then ray–iso-
surface intersection is straightforward. Analogous sim-
ple schemes exist for the intersection of tetrahedral cells.

To find an intersection (see Figure 10), the ray a + tb
traverses cells in the volume, checking each cell to see if
its data range bounds an isovalue. If it does, the system
performs an analytic computation to solve for the ray
parameter t at the intersection with the isosurface:

ρ(xa + txb, ya + tyb, za + tzb) − ρiso = 0 (3)

When approximating ρ with a trilinear interpolation
between discrete grid points, this equation will expand
to a cubic polynomial in t. This cubic can then be solved
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Ray equation:
x = xa + txb
y = ya + tyb
z = za + tzb

(x, y, z) =ρ ρiso

10 The ray traverses each cell
(left), and when a cell is encoun-
tered that has an isosurface in it
(right), the system performs an
analytic ray-isosurface intersection
computation.



in closed form to find the intersections of the ray with
the isosurface in that cell. We use the closed form solu-
tion because its stability and efficiency haven’t been
major issues for the data we’ve used in our tests. The sys-
tem examines only the roots of the polynomial contained
in the cell. There may be multiple roots, corresponding
to multiple intersection points. In this case, we use the
smallest t (closest to the eye). There may also be no roots
of the polynomial, in which case the ray misses the iso-
surface in the cell. Note that using trilinear interpolation
directly will produce more complex isosurfaces than is
possible with a marching cubes algorithm. Figure 11
shows an example of this, which illustrates case 4 from
Lorensen and Cline’s paper.20 Techniques such as the
Asymptotic Decider21 could disambiguate such cases but
they would still miss the correct topology because of the
isosurface interpolation scheme.

Unstructured isosurfacing
For unstructured meshes, we use the same memory

hierarchy as we did in the rectilinear case. However, we
can control the cell size’s resolution at the finest level.
We chose a resolution that uses approximately the same
number of leaf nodes as there are tetrahedral elements.
The leaf nodes store a list of references to overlapping
tetrahedra (see Figure 12). For efficiency, we store these
lists as integer indices into an array of all tetrahedra.

Rays traverse the cell hierarchy in a manner identical
to the rectilinear case. However, when the system
detects a cell that might contain an isosurface for the
current isovalue, it tests each of the tetrahedra in that
cell for intersection. The system doesn’t use connectiv-
ity information for the tetrahedra; instead it treats them
as independent items, just as in a traditional surface-
based ray tracer.

The system computes the isosurface for a tetrahedron
implicitly by using barycentric coordinates. It computes
the intersection of the parameterized ray and the iso-
plane directly, using the implicit equations for the plane
and the parametric equation for the ray. The system
checks the intersection point to see if it’s still within the
bounds of the tetrahedron by ensuring that the barycen-
tric coordinates are all positive. Parker et al. describe
the details of this intersection.4

Discussion
We contrasted applying this algorithm to explicitly

extracting polygonal isosurfaces from the Visible
Woman data set. For the skin isosurface, we generated
18,068,534 polygons. For the bone isosurface, we gen-
erated 12,922,628 polygons. These numbers are con-
sistent with those reported by Lorensen given that he
used a cropped version of the volume.22 With this num-
ber of polygons, it would be challenging to achieve inter-
active rendering rates on conventional high-end
graphics hardware.

Our method can render a ray-traced isosurface of this
data at roughly 10 frames per second using a 512 × 512
image on 64 processors. Table 1 shows the extraction
time (in seconds) for the bone isosurface using both near-
optimal isosurface extraction (Noise)23 and marching
cubes.20 Note that these numbers would improve if we
used a dynamic load balancing scheme. However, this
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(a) (b)

11 (a) The
isosurface from
the marching
cubes algo-
rithm. (b) The
isosurface
resulting from
the true cubic
behavior inside
the cell.

12 For a given
leaf cell in the
rectilinear grid,
indices to the
shaded ele-
ments of the
unstructured
mesh are
stored.

Table 1. Explicit bone isosurface extraction times.

Number Noise Build Noise Extract Marching Cubes
of CPUs (seconds) (seconds) (seconds)

1 4,838 110 627
2 2,109 81 324
4 1,006 56 171
8 885 31 93

16 437 24 49
32 118 14 26
64 59 12 24



wouldn’t let us interactively modify the isovalue while
displaying the isosurface. Using a downsampled or sim-
plified detail volume would allow interaction at the cost
of some resolution. Simplified, precomputed isosurfaces
could also yield interaction but storage and precompu-
tation time would be significant. Triangle stripping could
improve display rates by up to a factor of three because
isosurface meshes are usually transform bound. Note
that we gain efficiency for both the extraction and ren-
dering components by not explicitly extracting the geom-
etry. Therefore, our algorithm doesn’t suit applications
that will use the geometry for nongraphics purposes.

Our system’s interactivity lets us explore the data by
interactively changing the isovalue or viewpoint. For
example, you could view the entire skeleton and inter-
actively zoom in and modify the isovalue to examine the

detail in the toes all at about 10 fps. Figure 13 shows the
variation in frame rate.

Conclusions
We described two different algorithms for rendering

large-scale data sets on a parallel machine. Each of these
algorithms have their own strengths. We’ve pushed the
first algorithm to a higher number of processors (512),
while the second is limited by the number of processors
available in a shared-memory system (currently tested
to 128). For larger image sizes, the first algorithm may
be more appropriate, as large images will slow down the
ray-tracing process. However, for large data sets and
smaller images, the ray-tracing method can outperform
high-end graphics hardware even on a modest number
of processors.
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Parallel rendering is reaching a stage where it’s usable
for interactive rendering of large-scale data sets, not just
for offline generation of high-quality images. The two
algorithms we presented here are just a sample of those
that are forming a reality of interactive large-scale sci-
entific visualization. We anticipate data sizes will con-
tinue to grow at such a rate that direct parallel rendering
alone would not suffice to guarantee interactive ren-
dering. Additional techniques such as compression
should be applied whenever possible to accelerate both
rendering and communication. A multiresolution
framework is particularly desirable when there is a mis-
match between the data size and the processor size. That
is, when the number of processors available can’t ren-
der the data at the full resolution, the user should be
allowed to choose interactivity over accuracy by using
a coarser version of the data. Finally, we’ll extend these
algorithms to less expensive commodity workstation
clusters. The distributed memory architecture and the
relatively slow communication networks associated
with such clusters will require novel new techniques to
achieve interactive rates for large data sets. �
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