Kinetic Sweep and Prune for Collision Detection

Daniel S. Coming and Oliver G. Staadt

Institute for Data Analysis and Visualization
Department of Computer Science
University of California, Davis

Abstract
We propose an acceleration scheme for real-time many-body dynamic collision detection. We kinetize the sweep and prune method for many-body collision pruning, extending its application to dynamic collision detection via kinetic data structures. In doing so, we modify the method from sample-rate driven to event-driven, with no more events than the original method processed, also removing the per-frame overhead, allowing our method to scale well in terms of frame-rates. Unlike many schemes for many-body collision pruning, ours performs well in both sparse and dense environments, with few or many collisions.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures and data types; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Virtual reality

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: dynamic collision detection and kinetic data structures

1. Introduction
Collision detection is a common and often critical requirement for virtual and augmented reality, haptics, and physical simulations. The work of collision detection is to determine if/when objects intersect, or interact, which is useful in providing realistic environments, accurate simulations, and both appropriate and robust user interactions. The level of accuracy in collision detection directly affects each of the aforementioned properties. While some situations involve relatively few objects, it is common to find scenarios with hundreds or more objects. Scenarios requiring many-body collision detection include: large or complex environments, collaborative environments, and complex or large-scale physical simulations (see Figure 1). Most of the scenarios we have mentioned involve objects whose motion is not fully known in advance and require interactive frame rates of 30-60 Hz, so they require an on-line collision detection method. Haptics require even greater response rates at 1000 Hz or more.

Collisions are a common form of interactions, usually detected by the use of intersection tests. Many-body collision detection usually involves an acceleration method for pruning the majority of tests for object intersections paired with a method for reducing the number of feature intersection tests, along with more exact (and expensive) methods for finding interacting object features. The three primary classifications that apply to any of the above components of collision detection are static, pseudo-dynamic, and dynamic (also called continuous) [HKM95]. Static refers to one-time methods that determine if objects interact in their current configuration. Pseudo-dynamic collision detection is the common extension of static methods to systems with moving objects by incrementally moving objects and performing static collision detection at a regular rate. Commonly, due to the irregular distribution of collisions in time, this rate is too frequent or too infrequent at any given point in simulation. It is well known that these methods suffer from temporal aliasing, missing collisions due to objects moving too much between collision detection samples. Increasing the sample rate yields greater levels of accuracy with diminishing returns and degraded performance. Dynamic collision detection considers time and motion information in order to give conservative results without missing collisions, also providing time and location information about collisions. Resolving collisions is straightforward given this information, since objects never interpenetrate. Dynamic collision detection does not suffer from temporal aliasing. The threshold
where the accuracy of dynamic collision detection significantly diverges from pseudo-dynamic collision detection depends on how far objects move per sample interval. We have previously demonstrated that this threshold is when objects move by 1/3 of the smallest diameter of any feature, per sample interval, or frame [CS04].

Methods for pruning object intersections as well as feature intersections often use bounding volumes (BV) for simple preliminary tests, to reduce the number of expensive primitive tests that must be performed. World-centric BV’s, described in world-coordinates and often used in many-body collision pruning, include axis-aligned bounding-boxes (AABB) [HKM95, CLMP95, Zac02, ES99], discrete oriented polytopes (k-DOP) [FF03, Zac98, ES99], and spheres [KGS98, Hub95, Hub96, PG95, ES99, OD99, RKC01]. Spheres are also used as model-centric BV’s. In contrast to most world-centric BV’s, model-centric BV’s like oriented bounding-boxes (OBB) [Ebe02, ES99, RKCO2, RKLMO3, GLM96, GML00], are described in model-coordinates, and are often trivial to update for rotations. Model-centric BV’s are useful for object feature collision pruning. Both pseudo-dynamic and dynamic BV intersection tests exist for BV’s [KGS98, Ebe02].

Collision pruning methods utilize spatial and temporal coherence of objects in consecutive frames. Spatial subdivision methods [KGS98, dBCG01] prune pairs of objects that cannot possibly collide because they are not in the same cell at the same time. Spatial subdivision suffers from the difficulty of choosing cell sizes as well as the performance ratio of work spent on the scheme to the number of collisions detected. Adaptive spatial subdivision [dBCG01] suffers from high constant factors in the cost of maintaining the spatial subdivision as well as pathological configuration cases.

Coherence also aids the sweep and prune method used by Cohen et al. [CLMP95], as well as bounding volume hierarchies (BVH), in efficiently reducing the number of bounding volumes that need to be compared. [KHM*98, Ebe02, Zac02, van97, RKC02, RKLMO3]

In this paper, we present a many-body dynamic collision detection method that operates at interactive rates. To this effect, our contributions are as follows:

- *Kinetzize* the sweep and prune method for use with dynamic collision detection.
- Provide an event-driven method with no per-frame overhead, that is particularly scalable in terms of frame-rates.
- Demonstrate a scheme for efficient dynamic collision detection, with only locally known motion, that is quickly responsive to changes in motion.
- Give an alternative to swept bounding volumes for reducing the number of dynamic object intersection tests.

2. Related work

Most collision detection schemes work with a collision detection pipeline similar to the one proposed by Zachmann [Zac01]. This involves updates to bounding volumes, pairwise bounding volume tests, and pairwise feature tests between possibly-intersecting objects. This is followed by collision response, performed for each interval of time, usually at a rate of at least 30 Hz, some beyond 1000 Hz. Such methods incur overhead for each time interval tested, spent updating bounding volumes and collision pruning data structures, regardless of the occurrence or frequency of collisions during the time interval.

2.1. Collision detection methods

Dynamic collision detection methods generate results that are valid so long as the motions of the involved objects are valid. Thus, dynamic methods are driven by the events that cause changes in objects’ motions. Swept bounding volumes (SBV) [MC95, RKC02, RKLMO3, LSW99, HKL*99], are pseudo-dynamic BV’s that bound an object through its entire motion over a time interval, effectively reducing the number of dynamic intersection tests by casting the dynamic collision pruning problem into pseudo-dynamic acceleration schemes such as [CLMP95]. The problem with this is that it is still constrained by per-frame overhead, which is now more expensive due to the requirement to find tight bounds on not only the object, but its motion. Sampling too infrequently results in large SBV’s, and thus more dynamic intersection tests. Yet sampling too frequently results in much overhead in computing the SBV’s. Instead of an SBV that bounds motion, while itself not moving, we would like to use

Figure 1: Many-body (1000 rings, all in motion) interactive collision fly-through scenario on a display wall, for visual exploration. Red models are colliding.
a BV that moves with the object it bounds [KGS98, Ebe02], to avoid the per-frame overhead of SBV’s. We will call this moving BV a kinetic BV.

In I-COLLIDE, Cohen et al. [CLMP95] used sweep and prune, a pseudo-dynamic object collision pruning method which reduced 3D collision detection among AABB’s into three separate 1D problems, taking advantage of spatial coherence for expected $O(n)$ performance. We note that sweep and prune is a pseudo-dynamic method with per-frame overhead. We discuss sweep and prune in further detail in Section 3 and our extension of it for dynamic collision detection by kineticizing in Section 4.1.

Other methods using sweep and prune include: SOLID [van97, van99, van01], Swift++ [EL01], and V-COLLIDE [HLC+97]. Each of these methods used sweep and prune for object collision pruning along with different pseudo-dynamic intersection tests: Enhanced GJK [Cam97], Lin-Canny [LC91], and Separating Axis Theorem (SAT) with OBB-tree [GLM96] respectively. Further, each method could benefit from using our extensions along with the dynamic version of their corresponding intersection tests.

Eberly [Ebe02] discussed efficient dynamic collision tests based on SAT, applied to polygons, spheres, and OBB’s. He also provided a framework for hierarchical dynamic collision detection with OBB-trees, which we use. Cameron [Cam90] extruded 3D objects into a hierarchical 4D structure and performed half-space intersection tests based on that. He noted, however, that for many-body collision detection part of the method explicitly considered all $O(n^2)$ pairs of objects. Eckstein and Schömer [ES99] used hierarchical dynamic collision detection between complex objects, but did not resolve many-body dynamic collision detection, citing it as a “major bottleneck of multi-body simulation.”

Hotz et al. [LSW99, HKL+99] used swept AABB’s with space partitioning or coordinate sorting (similar to sweep and prune) for object collision pruning. Remaining object-pairs were tested for collisions using dynamic intersection tests. Our previous arguments against spatial subdivision and swept bounding volumes apply here.

Redon et al. [RKC02] used swept OBB’s and heuristically subdivided them when they grew too large relative to the object itself. The necessity of such a heuristic along with the involved work in subdividing SBV’s is evidence to us in favor of kinetic BV’s over SBV’s. They made no claims of scalability in the number of objects, however our tests with low frame-rates that have resulted in 30% more SBV overlaps, and thus worse collision pruning, than kinetic BV’s.

2.2. Kinetic data structures

Kinetic data structures (KDS) [BGH99] are methods for mobile data that “animate proofs through time,” by maintaining a set of certificates and a schedule of events representing failures of the certificates. For collision detection, a common use of KDS is to maintain proof of non-penetration of a pair of objects [BGH99, BEG+04, dBCG01].

Basch et al. provided an efficient KDS [BGH99] for maintaining the closest pair of points in a set, a method that naturally extended to maintaining closest features, which is useful for collision detection, however the closest pair of points or features can easily change $O(n^2)$ times without a collision even occurring. Maintaining the closest pair generates events too frequently for the case of collision detection, and with complex non-convex objects, evaluating the closest pair is expensive. Basch et al. [BEG+04] further provided methods for kinetic collision detection between two non-convex polygons by maintaining a KDS that kept track of the space between the polygons.

Kim et al. [KGS98] utilized a KDS for space-partitioning, where the events were (bounding) spheres entering or leaving cells, as well as collisions. Their method required $O(\lg n)$ work each time an object entered or left a cell, often much more frequent events than collisions.

Often, collisions are irregularly distributed in time, so we propose an event-based collision detection method that uses a KDS to avoid this per-frame overhead.

3. Overview

Our method allows the simulation to drive its action, processing events in time-sequential order and/or accepting motion updates as deemed necessary by the simulation. Due to the order of events, collision pruning, object intersection tests, and collision responses are handled in an interleaved manner. Figure 2 shows how we handle these actions. Note that the simulation can delegate work to the collision detection whenever it has extra time; the collision detection engine is robust and without penalty for invoking collision detection too frequently or infrequently.

In order to accomplish this, our methods draw on established techniques in both collision detection and computational geometry. Sweep and prune [CLMP95] provides object collision pruning while we use dynamic collision detection using OBB-trees [Ebe02] for exact feature-level collision detection. Kinetic data structures [BGH99] are commonly used in computational geometry for efficiently handling data points with motion information.

Sweep and prune is a dimension reduction collision pruning technique that projects objects’ geometries into 1D in x, y, and z, storing the extrema on lists. The method updates and sorts these extrema and prunes collisions by tracking when they swap positions. We go into more detail on sweep and prune in Section 4.1 and object intersection tests in Section 4.4. For now, we note that it is a good candidate for kineticizing, extending a static or pseudo-dynamic method with a kinetic data structure, because it depends on swaps that are
In this section we present the components that make up our dynamic collision detection scheme *kinetic sweep and prune* (kinetic SP). Given descriptions of the motions of objects, we schedule events that signal when kinetic BV’s start or stop intersecting. When kinetic BV’s start intersecting, a pair objects could collide in the near future, so we perform dynamic complex object intersection tests to determine when and where the first point of intersection will occur. If a future intersection is found, we then schedule a collision response to occur at the first intersection time.

4.1. Kinetizing sweep and prune

We use a *kinetic sorted list* [BGH99], a KDS for maintaining a sorted list of 1D moving points. This keeps the list continuously sorted, in spite of the values in the list changing, i.e. due to their motion. For each pair of adjacent list elements, we schedule an event for the first time when the elements cross (or the earliest time they could possibly cross, if motion descriptions are incomplete). The following equation shows the simple calculation to predict intersection for linear motions:

\[
 t = \frac{p_j - p_i}{v_i - v_j}.
\]

Where \(t \) is the time of intersection relative to time \(t_0 \); \(p_i, p_j \) and \(v_i, v_j \) correspond to the position and velocity, respectively, of moving points \(i \) and \(j \) at \(t_0 \).

Scheduled events are processed in time-sequential order and list elements swap positions, resulting in the destruction of two old adjacencies and the creation of two new adjacencies. The *kinetic sorted list* must respond in turn by descheduling up to two events and scheduling up to two new events. Processing each swap in this way is not optimal for certain circumstances [BGH99]. However, we apply the *kinetic sorted list* to the sweep and prune method, where the swaps provide useful information relevant to collision detection. For this reason, theoretical bounds on kinetic sorting established by Abam and de Berg [AdB05] do not apply to our method.

For collision pruning, we *kinetize* sweep and prune [CLMP95]. We maintain three ascending-order sorted lists: one for each of \(x \), \(y \), and \(z \) axes. The elements on the lists are intervals \(\text{Min}_i, \text{Max}_i \), obtained by projecting objects’ geometries onto each axis. We keep these lists updated with current projections and sorted with insertion sort. When two maxima, or two minima, swap positions, there is no effect. However, whenever a maxima and a minima swap positions on the list, a pair of intervals either begins or ceases to intersect, depending on whether the left element was a maxima or minima, respectively, prior to the swap. A pair of objects can intersect only if their projected intervals intersect on all three axes, i.e. their AABB’s overlap. Thus, sweep and prune maintains a basic set of separating axes, axes upon which objects’ projections do not intersect, which act as "witness" to the non-penetration of objects. Further, this witness to non-intersection is maintained through swap events.

Worst-case performance of this method is due to the possible number of swaps, \(O(n^2) \). In practice, Cohen et al.
Kinetic SP represents objects by their kinetic BV’s. These are obtained by projecting objects’ geometries into AABB’s; then the x and y components of the AABB’s and objects’ velocities are stored in lists, one per axis. Kinetic SP stores predictions for when adjacent list elements will swap, based on their motion, e.g. by Equation 1. A prediction of ∅ indicates that the corresponding pair of elements will never swap. The details of the list corresponding to the x-axis have been shown; the y-axis has a similar representation, as does the z-axis in the 3D case.

[CLMP95] argue, the performance of the insertion sort is expected O(n). Such optimal scenes for the method are sparse, have few collisions, or exhibit a high degree of temporal coherence due to either small object velocities or high sample rates. In these cases, we have measured that the number of swaps is often one or more orders of magnitude smaller than n. This indicates that the bottleneck no longer rests on the frequency of swaps, but instead on updating the list elements and verifying the sorted order of the lists. We can remove these costs by using a KDS to maintain a proof that the lists are sorted.

Kineticizing the sweep and prune method involves using kinetic sorted lists rather than static lists with insertion sort. Each list element has its own motion information. In addition, a priority queue stores predictions for when each adjacent pair of list elements will swap, e.g. by Equation 1. Figure 3 shows how kinetic SP obtains and represents these kinetic sorted lists from the objects’ BV’s and motions. The need for updates is reduced to only notifying kinetic SP when the motion of an object changes, rather than every time the position changes. Otherwise, the sweep and prune method is unchanged: we handle swaps the same, use AABB’s, use one list for each of the x, y, and z axes, and maintain the overlap status of each pair of BV’s.

Figure 3: Kinetic SP represents objects by their kinetic BV’s.

4.2. Events

Our system works with two types of events: collision responses and swaps. The KDS for swaps involves a priority queue of swap predictions and a list of extrema with motion information. Figure 4 demonstrates how swaps are handled. When motions change, effectively, the same method is applied. Swap predictions for the neighbors of Min, Max are descheduled, recalculated, and rescheduled; the difference is that nodes are not swapped, unless the motion change was a discontinuous change in position. Swaps and collision responses are stored in separate priority queues. To avoid unnecessary computation on events that can be cancelled, only the event time and associated object references are calculated in advance. The collision detection system processes each swap or collision response in time-sequential order, when prompted by the simulation. Additionally, the collision detection interface allows the simulation to notify the collision detection engine of motion changes for objects.

Basch et al. [BGH99] mention that for a “real time system, it is possible that there is not sufficient time to com-
pletely process an event before the next event appears.” Processing the swap event, in our case, is efficient in terms of KDS’s, because the number of internal events is the same as the number of external events, swaps, with $O(\log n)$ work for scheduling. The number of swaps s is $O(n^2)$ in the worst case, for linear motion in a given time interval. Events, especially collision responses, can occur in bursts with arbitrarily close times such that any system would fall behind.

We attempt to minimize the latency in such a scenario by using OBB-trees for efficient intersection tests of large complex models. Additionally, we cache the results of dynamic intersection tests, which are by their nature, predictive, and valid until the motions of the objects change. Our system is scalable to very high frame rates, and often would leave the CPU idle in a forced real-time situation. In such a case, it would be possible to utilize the extra time for caching future predictions and use a Timewarp Collision Detection [Mir00] system for concurrency control.

4.3. Object motion

We draw a contrast here, between a discontinuous change in position, and continuous motion. Many collision detection methods pay a cost related to objects merely moving through space, whether they could possibly collide with other objects or not. Among these methods are any pseudo-dynamic or spatial subdivision methods, but most notably the original sweep and prune, which Cohen et al. [CLMP95] measured to have spent significant amounts of time updating bounding volumes, due to discontinuous changes in objects’ positions. Indeed, it was as much or more than the time spent sorting their $O(n)$ size lists with insertion sort, which did exhibit the expected $O(n)$ behavior.

For the kinetic sorted list, we can assume any piecewise pseudo-polynomial function for motion, which is what KDS’s are designed to handle. We assume motions are known at least locally, and that motions can change at any time, so long as the collision detection system is notified of the change. Though kinetic SP can efficiently and robustly prune collisions with higher order motions, we use piecewise linear motions for simplicity in our testing. This is due to the complications of higher-order primitive intersection tests necessary when objects’ BV’s overlap.

In some cases, it is useful to provide kinetic SP with simplified bounds on motion, rather than exact descriptions. This is especially useful when actual motions are expensive to parameterize and/or change very frequently. Also, this can be used to deal with noise in the source of motions (e.g., tracked input devices). Further, for handling motions which include rotations, kinetic SP could work just like the original sweep and prune; place spheres around rotating objects, so they have rotation-invariant BV’s as in [MC95], and then enclose this with an AABB, which is not much larger than the sphere [CLMP95]. Alternatively, the minima and maxima of the AABB’s could use motions that expand and contract the AABB to handle rotations. For the sake of avoiding pathological cases where swaps happen at a high rate due to such oscillation as shown in [CLMP95], we use an AABB around a sphere for rotating objects. Dynamic intersection tests that handle rotations [KR03, Ebe99] are not necessarily fast enough for interactive rates with many objects. This is because there is no closed form solution to those tests and numerical solvers are required for root finding.

Motion has a tendency to change often, in scenarios requiring collision detection, due to collision response, user intervention, or other external factors. It is important, therefore, for the KDS to be responsive, requiring updates for few events when motion changes. For kinetic SP, a motion change for an object can result in modification of up to six events, two per axis, each of which could require $O(\log n)$ work for scheduling. In practice, this work, while comparable to that of a swap, is invoked much less frequently.

4.4. Practical concerns

Promptly following swap events that generate active pairs of objects (i.e., those whose BV’s overlap), we perform hierarchical dynamic intersection tests between the corresponding complex objects. The minimum of the search interval for these tests is bounded by the current simulation time, typically when the last swap, collision response, or motion change occurred. The maximum starts unbounded. As with any dynamic collision detection, the results of these intersection tests become invalid for objects which undergo collision response and/or motion changes. At such a time, active pairs including one or more of the affected objects require re-testing.
For complex object collision tests, we use dynamic intersection tests with OBB-trees [Ebe02], based on interval arithmetic and SAT, which gives time, location, and feature information for collisions. We tested dynamic intersection tests with sphere-trees like [RKC01], however OBB-trees yielded significantly faster performance. Figure 5 contains examples of complex objects, with over 6000 triangle faces, that rely on OBB-trees for efficient intersection testing.

We refer the reader to the literature on OBB’s [Ebe02, ES99, RKC02, RKLm03, GLM96, GML00] for information on hierarchical OBB intersection tests. Here it is sufficient to know that an OBB-tree is a hierarchy of OBB’s, built by bounding and subdividing pieces of a model, with a constant number of primitives in each leaf node. OBB-trees have been shown to be tight by Gottschalk et al. [GLM96]. Testing for intersections between objects bounded by OBB-trees involves recursing through the trees, performing OBB intersection tests among tree nodes and primitive intersection tests among primitives bounded in leaf nodes. This continues until intersecting primitives are found. For dynamic intersection testing, the first intersection time is usually desired, so the search continues after bounding the maximum of the search interval with the first known intersection time.

Since the majority of the work spent maintaining a KDS is scheduling and descheduling events, it is crucial to choose an appropriate data structure for the priority queue. We chose the auxiliary two-pass pairing heap [SV87], due to its efficiency for priority queue operations. It features amortized $O(1)$ complexity operations for insert, meld (join with another pairing heap), amortized $O(\lg n)$ operations for removeMin as well as arbitrary removals and decreaseKey, all with low run-time coefficients.

5. Results and analysis

We tested many-body collision detection methods with ring-models composed of 64 triangles each (see Figure 1). Except where noted in specific experiments, collision detection was sampled at 1000Hz with a scene consisting of 100 objects at 1% scene density, with velocities in random directions at a magnitude in the range of 0.5–1.5 times the radius of the average bounding sphere. Although we have demonstrated interactive rates with more complex objects, as in Figure 5, rings are sufficient to demonstrate the performance of collision pruning methods intended for complex objects.

As a simple approach to the problem, consider a dynamic collision detection system which tests all $\binom{n(n-1)}{2}$ possible object-object intersections and caches the results and handles the collisions in order. Whenever a collision response occurs or an object’s motion changes, the system would need to re-test each affected object against each of the other $n-1$ objects. Let us refer to this method as cached dynamic collision detection. As we will show, it is quite inefficient due to the lack of collision pruning. However it is event-driven, performing work only as necessary per collision.

Results were gathered on a 2GHz AMD Opteron 246 with 8 GB RAM. At any time, however, our method used only a small fraction of system memory. Collision response is performed as simple rigid-body collisions between equal-mass objects. For statistical relevance, since collision detection occurs at very small time-scales, we generate results by averaging no less than five samples per data point, in addition to allowing simulations to complete between 100 and 2000 frames, one full simulation second. Further, we use uniformly random initialization methods for each object’s position, velocity, orientation, and size.

Independent of configuration, the results from each method, collisions including times and locations, agreed and were consistent throughout the tests. This is because dynamic collision detection does not suffer from temporal aliasing. Hence, the comparisons in Figures 6 and 7 are focused on improving the performance of dynamic collision detection, as well as extending it to high frequency domains without frequency-related overhead.

As is shown in Figure 6, we verify the scalability of sweep and prune, whether with SBV’s or KDS’s. We certainly see, on this logarithmic scale, the benefits of collision pruning with sweep and prune, and notably kinetic SP. The number of collisions that occur given each configuration is shown to give reference to the behavior of each method. Both kinetic SP and cached dynamic collision detection are event-driven, evidenced by how closely their costs increase and decrease proportionally with the number of collisions. However, while sweep and prune (with or without SBV’s) also
has an associated per-event cost, shown by the jumps in cost for 200 and 400 objects, the per-frame overhead limits performance for 700 objects, compared to other methods.

Figure 7 demonstrates the per-frame overhead of sweep and prune; the cost of updating and sorting increases linearly with simulation frame rates. By contrast, kinetic SP only exhibits slight increases due to the simulation frequently polling to check if a collision response was ready. Otherwise, kinetic SP demonstrates freedom from per-frame overhead as an event-driven method. Ideally, the simulation would have a thread waiting for collision response events, instead of polling, but that would make direct comparison difficult.

5.1. Performance

Our extension of sweep and prune does not get around the per-frame asymptotic bounds of \(O(n^2) \) in the worst-case. The worst-case limiting factor is the number of swaps, however we have shown that the per-frame update cost of \(O(n) \) becomes a limitation in consideration of high frame-rates. The number of swaps is independent of frame-rates, which is how we treat swaps. In getting around the per-frame overhead of sweep and prune, we take on a scheduling overhead that comes with the KDS. With two-pass auxiliary pairing heaps, we keep this down to an amortized cost of \(O(\lg n) \) for removal operations and \(O(1) \) for insertions. With kinetic SP, coherence is used maximally, in fact, preserved each time a predicted swap occurs, thus it is not necessary to talk about its expected performance, but instead in terms of events. The overall asymptotic bound of our collision pruning method for any time interval is \(O((s + u + c) \lg n + c \lg c + b) \), where \(s \) is the number of swaps, \(c \) is the number of collisions, \(u \) is the number of motion updates that occur in that interval, and \(b \) is the cost of all of the object intersection tests. This is an improvement over sweep and prune’s per-frame cost of \(O(n^2) \), since \(s \ll fn \) and \(u \ll fn \), where \(f \) is the number of frames sampled. Further, this improves on the cost of sweep and prune with SBV’s, which is \(O(n + s + c \lg c + b) \).

Kinetic SP performs no more intersection tests than sweep and prune with SBV’s. The kinetic BV is tighter; it does not expand to account for motions, so it generates the same number or fewer active pairs for intersection testing than SBV’s, at least when referring to the same base BV-type in both cases. Our experiments have shown that for frame-rates as low as 1Hz, SBV’s resulted in more than a 30% increase over kinetic BV’s in the number of dynamic intersection tests performed between objects. The extra 30% increase was extraneous, as it yielded no more collisions. This increase in intersection tests was on the order of the number of collisions detected for the tested interval. This differential grows with higher object velocities or lower frame-rates.

In the terms outlined by Basch et al. [BGH99], the kinetic sorted list is local because the maximum number of events in the KDS that depend on one moving object is \(O(1) \). In fact, it is six: up to two events per axis. Further, it is compact, because it only requires \(O(n) \) space. Also, it is efficient in our case, as opposed to its original proposal, because it performs the same number of internal as external events, swaps.

The memory requirement of both kinetic and regular sweep and prune is \(O(n^2) \), that is required for keeping track of whether objects’ BV’s overlap. In addition to this, we add two priority queues, one of which stores swaps in \(O(n) \) space, and the other stores collision responses in \(O(n^2) \) space, with active removal of invalid nodes.

5.2. Robustness

Kinetic SP only requires an axis-projected BV such as AABB or k-DOP, along with the motion of the BV and a guarantee that the kinetic BV bounds the object for some specified time interval. An event could be generated for ending the validity of a kinetic BV, whereupon it can be recalculated. Kinetic SP works independent of the underlying description of objects, which could be made up of triangles, point sets, or parameterized functions, for example. Further, kinetic SP is independent of the motion of underlying objects, dependent only on the possibly simplified motion of the kinetic BV provided. Rotations and even deformations can be accounted for in the motion of the kinetic BV. It is also necessary that some methods for testing object interactions are defined, such as intersection tests.

Our method can use pseudo-dynamic intersection tests by scheduling polling events that perform intersection tests on all active pairs of objects at the polling time. This introduces a per-frame overhead, but not due to kinetic SP. Such costs may be acceptable for objects whose dynamic intersection
tests are undefined or too costly. When used with pseudo-dynamic intersection tests, our method will not introduce missed collisions; it reports exactly when kinetic BV’s overlap. Missed collisions are due to pseudo-dynamic testing.

6. Conclusions and future work

We have presented our many-body dynamic collision detection system. We have kinetized the sweep and prune method, extending its use to dynamic collision detection, and removing its per-frame overhead. This allows kinetic sweep and prune to perform not only at interactive rates, but to scale well for even higher sample-rates. This is accomplished even with only locally-known object motions and is quick to respond to changes in motion, without requiring swept bounding volumes. Our method scales well with frame-rates, objects, and collisions, and is event-driven, allowing greater flexibility than frame-based methods.

As future work, we would like to apply the methods we have presented to high sample frequency settings, such as haptics. Additionally, we intend to apply kinetic SP with pseudo-dynamic intersection tests, for comparison. Finally, there are cases where traditional sweep and prune is more efficient than kinetic SP, such as when swaps and updates become unusually frequent. However, such a condition usually occurs for short durations of time and so warrants further investigation into a hybrid method.

Acknowledgements

This work was supported in part by an HP-CITRIS fellowship and a Microsoft-CITRIS grant. Thanks to Charles Martel, Yong Kil, Benjamin Ahlborn, and the members of IDA V for helpful discussion.

References

[Mir00] MIRTICH B.: Timewarp rigid body simulation.

